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ABSTRACT. This paper presents the survey of the basic ideas and results of

the h, p and h-p versions of the finite element method.

Key words: Finite element method, the p-version of FEM, the h-p version of
FEM, adaptive finite element method



1. INTRODUCTION

Finite element method is today the major tool in computational

mechanics. Many research and commercial programs are used in practice. More

than 40 thousand papers of theoretical and computational characters have been

published.

The software of the finite element method is complex and is influenced

by the theory, implementational aspects, computational experience and

engineering needs. It is influenced by the hardware development and the

relation between the computer and manpower cost as well as the class of

problems to be solved by the engineering community. The finite element is a

tool for obtaining the data of interest with the accuracy in a prescribed

range in an effective way (taking into account the computer and manpower

cost.) The existence of a reliable and accurate quantitative a-posteriori

error estimation for any data of Interest should be one of the major aspects

of assessing the finite element method in general and a code in particular.

The various adaptive approaches together with users interaction are essential

for the effectiveness of the approach.

The majority of the results and finite element programs in structural

mechanics are based on the classical h-version. Nevertheless, during the last

ten years the p-version and the h-p version was developed, major theoretical

results achieved and few large scale program developed. Especially, we

mention here the program STRIPE (Aeronautical Research Institute of Sweden),

Applied structure (Rasna Corp., CA, USA), PHLEX (Computational Mechanics, TX,

USA) and MSC/PROBE MacNeal Schwendler, CA, USA). (We note that less than

one hundred papers addressing the p and h-p versions have been published.)

Comparison of the methods and codes based on the h, p and h-p versions

is a complex task and depends on the criteria used. It seems that one of the

malor criterion Is the existence of a reliable quantitative error estimation



of any data of interest-not only for example measured by the energy norm. In

addition, the adaptive approaches are imperative, together with the robustness

of the method and its effectiveness in the sense of computer and manpower

cost. Theory of the method has to be well developed, so that it reliably

serves to the understanding of the method and its features.

In this paper we will focus on very basic aspects of the h, p and h-p

versions of the finite element method, especially with respect to the

theoretical understanding. We will show that it is possible to obtain very

useful understanding from the detailed mathematical analyses of a simple one

dimensional problem. The mathematical theorems properly used are very

important guidelines for the software in 2 and 3 dimensions too. We will

present also basic results in 2 dimensions and highlight the similarity and

differences between the one and two dimensional cases. In this paper we will

focus on aspects and examples of most simple nature, but still keeping certain

essentials of the general cases intact. We will emphasize the aspects of the

R and h-p versions of the finite element method. For the survey of the

practical aspect of the p-version in the context of solving complex 3

dimensional program based on program STRIPE, we refer to [21 (3]. For the

survey of the basic theoretical results, we refer to (201.

In Section 2 we will address the h, p and h-p versions in one dimension,

present basic very detailed theoretical results and make comments of their

meaning and importance in more general setting of the adaptivity, etc., with

analogs in 2 and 3 dimensions. Section 3 will elaborate on the two

dimensional problems.

In this paper we will restrict ourselves, for simplicity, only to the

energy norm accuracy measure, although it has relatively very limited

practical engineering importance in the sense we defined above, but I will

still allow us to show many basic features of the general case (discusses in
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[2] (3]). Numerical examples will illustrate the use of the presented

theoretical result in practical context.

2. THE FINITE ELEMENT METHOD IN ONE DIMENSION

2.1. Formulation of the problem

As said in the introduction, the one dimensional problem is a good way

to explain the essentials of the h, p and h-p versions.

We will consider the following simple one dimensional model problem

(2.1.la) -u" = f in I = (0,1)

(2.1.1b) u(0) = u(M) 0

with the exact solution

(2.1.2) U 0x) = (x -x), a > 1/2.

Let H 1I) be the standard Sobolev space and

H1M(1) = fu e H1(I)u( = u(M) = 0).

Further, let

(2.1.3) B(u,v) = {O u'vI dx

be the bilinear form on H 1I) x H (I) and let lull = (B)u,u /
0 0 111E =

Obviously, is equivalent on H0I with the Sobolev norm We
111E0 1-1H 1(I)

will assume that a > 1/2 to get IluO11E < =

The solution (2.1.2) is a very good model for the two dimensional

problem where the domain has corners (e.g., cracked domain, etc.) or

interfaces and of 3 dimensional problems too.

In two dimensions u = rd(0) e H( 1 M) for 9 > 0. This and other

reasons show that the results in two dimensions with the singularity of the
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type r 3V(9) should be compared with the one dimensional case when a =

13 + 1/2.

Let
A A A

A {O = xa < xA < ... < XA
0 1 inCA)=

be the mesh on I and IA = (xA x.), I = 1,.. m(A), hA = JI.j = xA A
I i-I . i

ah A
h(A) = max h I = 1,2,... ,m(A). The points xi will be called the nodal

points and I. the elements. Let further p = Pm(A i
S1 .......... ..... ..... .mCA,

integer be the element degree vector. We will use the notation Z = (A,p)

which will characte.-ize the basic finite element method. Let

S = S(M) = {u e HO(I) ulii is a polynomial of degree pi1

We will call NCM) = dim S(!) the number of degrees of freedom.

Finite element solution u, e SC!) is then defined so that

(2.1.4) B(u,,v) = B(uo,v), V v E SCM).

We will denote the error by e = e, = u! - u and will be interested in

the accuracy measure 11-'1E

Let us now define the h, p and h-p versions of the finite element

method. To this end, assume that a sequence Z'i with N(Wi) = Ni, N. 4 o

be given (resp. constructed by an adaptive approach). Then computation of

ui will be called

a) The h-version: if Zj = (AJPO), where PO = A... '

i.e.,the degree of the elements are fixed and the mesh is changed

(refined). This is the classical version of the finite element

method.

b) The p-version: if = (Ap where p• = P, A,
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either p. . = p. (i.e., uniform p) or p. P if f * i

(i.e., nonuniform degrees), i.e., mesh is fixed and degrees are

increased.

d) The h-p version: if Zj = (AY,p.) where both, the meshes and the

degrees, are changed.

We will associate to the solution uz a computable a-posteriori error

estimator IleIIE. Usually the error estimator is computed by elemental error

indicator (I) with

indiato 2~. with2

n2I = (u.

We will assume that the goal of computation is to design Z so that 6(u E

Ile, 1E S TIIuIIE where T is an a-priori given tolerance (say 1% or 5%). We

will not address here in detail the concrete form of the estimation.

2.2. The h-version of the finite element

Obviously we have for the h-version N(Z) = mp - 1. The first

theoretical question is what is the best accuracy the h-versior could provide

among all meshes. We have

Theorem 2.2.1 [36]. Let a > 1/2 be a non-integer, and u0 be given

by (2.1.2), then there is a constant C = C(a,p) > 0 such that for any mesh

-p
(2.2.1) IeEIIE , > CN 0

This theorem shows that (asymptotically) it is not possible to expect

anything better than the rate N-p when elements of degree p is used. This

does not mean that this accuracy will be achieved for any mesh.

The question is whether for a proper sequence of meshes we get

5



-p
I1 e, IIE :5 CN

Hence, the problem arises, what is the best theoretical mesh. To this end we

introduce the notion of the grading function. Function g(x), 0 s x s 1 is

called a mesh grading function if the nodal points of the mesh are such that

x1 = 1,2,. ,m = m(A)xi g ,...

1 13

The mesh will be called radical if g(x) = xA. We shall assume that the

grading function g(x) satisfies the following conditions:

G(1): g(O) = 0, g(l) = 1,

G(2): g is continuous and strictly increasing,

G(3): g e C (0,1) C 0[0,11.

Then we have

Theorem 2.2.2 [361. Among all grading functions g(t) satisfying

Assumption GM1) - G(3)

= x p+/2gopt = x f3 -1/2

is the optimal one. Precisely with this grading function

1

(2.2.2) lim mPIeElIE = c(2,p)

where

(2.2.3) C(a,b) -r(a)lsin 1rc r(p-a+1)
,, 4Pvr2-p+! F(p+-)

attains the minimum. We see that the optimal mesh is radical one and gives

maximal possible rate N-p.

Theorem 2.2.3 [36]:
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a) If f > P then
2 1

(2.2.4) 
lir mPlleZI1E C(a,p)31

m4-0 V(2-1)13-2p

b) If 1r then
cr P-1

mPlIeEIIE 1

(2.2.5) lim r C(a,p)P
m-)

c) If R < p then1 '
M-2

(2.2.6) lir mPIle, 1E =
m-)W

where C(x,p) is defined by (2.2.3) and 0 < C (a,t3,p) < w has a more

complicated expression. o

We remark that ) = 1 corresponds to the uniform mesh. Theorems

2.2.1-2.2.3 indicate

a) The maximal achievable rate of convergence is N-p and this rate

can be achieved by a proper mesh also for nonsmooth solution of the

type (2.2.1). This optimal mesh depends on the strength of the

singularity and the used degrees of the elements. Increasing the

degrees of elements leads to the strengthening of the refinement.

b) The optimal mesh is the radical one. Underrefinement is more

"dangerous" than overrefinement, because it can significantly slow

down the convergence.

We have addressed Lhe method and the optimal mesh only in the case when

the solution is given by (2.2.1). In general, the mesh has to be constructed

by an adaptive procedure. Two types of adaptive mesh construction are used

(in one or 2, 3 dimensions).

a) A sequence of meshes in constructed by consecutive refinement or

7



derefinement of the particular elements. The goal for refinement

or derefinement is to make the (elemental) error indicators -a

approximately equal. For a detailed theoretical analysis of this

approach in one dimension, we refer to [23]. The final mesh is

accepted when the error estimator indicates the acceptable accuracy.

b) The initial usually crude mesh is used for the computation of the

basic characteristic of the solution. Using these characteristics a

new mesh is constructed with the aim to get acceptable accuracy. If

the accuracy is not achieved, the process is repeated. (See. e.g.

[6][39]1[40][57][59])

We will call the adaptive approach based on a) the local approach and if

it is based on b) the global approach.

The mentioned theoretical results give an important insight into the

design of the adaptive procedure and judging its performance when used on the

benchmark problem with the solution (2.2.1). The notion of the grading

function can be used in general and especially in the global adaptive

approach. See [39] [40].

The mesh construction is very influenced by the implementational

aspects. For example, in the local adaptive approach often only the halving

of particular elements is used. Accuracy and reliability control is a very

important task in the practice of finite element method. Various mathematical

and heuristic methods for 1, 2 and 3 dimensional problems were suggested. We

refer here as examples to [1][5][6][14][16][17][18][19][24][25][30][31][32]

[34][40][41][47][481[53][54][55][56][57][58][60][511 and the survey [17].

Various adaptive codes based on the h-version were written (see. e.g. [26]

(331 [44] (51] [59]). The error estimates are in the h-version usually for

the energy norm error. The a-posteriori estimates for other data as stresses

in a point, the stress intensity factor, etc., are almost impossible to get by

8



the approaches used for the energy norm measure.

2.3. The p-version

In the p-version the mesh A is fixed, i.e., the mesh is made usually

by the user (based on his experience and various basic rules) and the accuracy

is obtained by (adaptively) increasing the degrees of elements. The degrees

could be uniform or nonuniform. The error estimator 6 is usually based on

comparison of computed data for the sequence of used degrees and an

extrapolation procedure. See, e.g. [54,55,56] for details.

In 2 and 3 dimensions, the user identifies the singular areas as corners

and edges, and, for example, constructs locally refined meshes in these

singular areas, and then, by a general mesh generator, connects (complements)

these local meshes to the mesh of the entire domain or constructs first the

mesh and then refines it in critical areas. The degree of the elements

which leads to the desired accuracy is then adaptively determined. The

singularity refinement is made by the "layers" of the elements around the

singularity. (See examples of two dimensional meshes of this type in Section

3 (Fig. 3.2.1)). A minimum of 2-3 layers is practically necessary because for

accurate stress computation in a point at least 2 layers have to separate the

point from the singularity point. The p-version allows to use relatively very

small number of elements.

Let us now present typical results showing the features of the p-version

when applied to the solution (2.1.2). To this end let
(2.3.1) -A inf a NOuo - Ai A = llu - u1lI a

W=P (I ) E(I.) (I.)

p i 1 1

where P (I A) is the class of all polynomials of degree p. We mention that
pi1

(2.3.1) is in )ur case the error of the finite element solution and 11e.11 2
m

= Z
I=1

9



A
Theorem 2.3.1 [36]. Let I. = (a,b) then1

a) if 0 < a < b s 1
1 2 c-1 p

(2.3.2) V(Ii) C1 (W)(b-a) 2r. r

where a > 0 and

(2.3.3) C1(a) 1 arwisin nal
2a-(1/2) V7

1l/2a1/2

(2.3.4) 
r. -

b b1/2 +a17/2

c) If a 0, 0 < b l 1
1

n =I C0 (a)b 2  i I+ 0~
p

where

(2.3.3a) Co () - arI(o 12sin 7TO n

0tV 2a-1

Theorem 3.3.1 shows that in the first element 11 the rate is only

algebraic, while in all others it is exponential. It shows also that the

A
accuracy in the first element I is essentially governed by its size (h1

b) while the accuracy of the other elements is governed by their degree

(because the exponential rate). We see that the error 7(I), i & 2 will be

essentially equal (for uniform p) in all the elements I. when the mesh is
1

A A
geometric with the factor q, i.e., xi_ 1 = qxi, Xm(A) = 1. Hence, a

geometric mesh is a good choice (see Section 2.2.4 for additional arguments).

The question how many elements and which factor q should be selected

Is very important for practical computation. Small q and large m(A) can

lead to the "overrefined" mesh for p small because the error IlellE is

governed by the error In the largest element. For high p the small factor

q is preferable because the error is essentially governed by the elements

close to the singularity. The overrefinement is advisable because when small

10



p (which is adaptively determined) leads to the desired accuracy, the

computation is cheap and overrefinement does not essentially increase the

cost. On the other hand, if the desired accuracy needs high p, the

underrefinement could be very costly. Hence, the user designing a mesh has to

take a "cost risk" although he will get always the required accuracy by

adaptive solution of the degrees.

To illustrate these points, consider the mesh with 2 elements I=

(O,p), 12 = (p,l) and compute (see (2.3.2))
1

a-2 1

(2.3.5) •.(I1) P 2-1

p

1 p

(2.3.6) •*(I2) = (l-p)

p

for various p, a and 6. Note that in (2.3.5) and (2.3.6) we did not include

the constants CO () and C1 () which have the factor Isin ral. To model

the case, which we will study in Section 3 (u z r /2) we will use a =

1,2,3. This has to be understood as the limiting case a = 1-c,2-c,3-c with

c÷ 0 or when the approximate solution is u = x lg x.

2
In Table 2.3.1, we report n (I ) and 12(12) as function of p, p and

1 *a2

a= 1,2,3. We see, for example, that for a = 1 the error is governed by the

error in 11 for p ý 2, and hence p is "too large", i.e., the mesh is

underrefined. For a = 2, the mesh is "overrefined" when p = 0.1 and p S

8, and for 0.2 when p s 5. Noting the magnitude of the errors, we see

that the overrefinement makes no harm because the accuracy is achieved for

small p, and computation is cheap. From (2.3.5) and (2.3.6) as well as from

Table 2.3.1, we see that(for the fixed mesh) for smaller p the rate is

exponential and for p larger when 11 is error governing interval, the rate

11



TABLE 3.1. The errors ',(I 2, (I2)
2 2

g= 1

p 0.1 p 15 p= 0.5

2(- 2 2 2 2

p .I1 2 7*1 7*2 17*1 7J 2

1 1.00-1 2.42-1 1.50-1 1.65-1 5.01-1 1.47-2

2 2.50-2 1.63-2 3.75-2 8.08-3 1.25-1 1.08-4

3 1.11-2 1.96-3 1.66-2 7.00-4 5.55-2 1.42-6

4 6.25-3 2.98-4 9.37-3 7.69-5 3.12-2 2.34-8

5 4.00-3 5.15-5 6.00-3 9.59-6 2.00-2 4.42-10

6 2.77-3 9.65-6 4.17-3 1.30-6 1.38-2 9.04-12

7 2.04-3 1.91-6 3.06-3 1.86-7 1.02-2 1.95-13

8 1.56-3 3.95-7 2.34-3 2.78-8 7.81-3 4.41-15

p :0.1 p =0.2 p = 0.5

1 2 12 * 1 2

1 1.00-3 1.96-1 3.83-3 1.19-1 1.25-1 3.67-3

2 1.56-5 3.31-3 5.27-5 1.46-3 1.95-3 6.77-6

3 1.37-6 1.77-4 4.63-6 5.62-5 1.71-4 2.93-8

4 2.44-7 1.51-5 8.24-7 3.47-6 3.05-5 3.66-10

5 6.40-8 1.66-6 2.16-7 2.77-7 8.00-6 4.42-12

6 2.14-8 2.17-7 7.23-8 7.23-8 2.68-6 6.27-14

7 8.50-9 3.65-8 2.81-8 2.74-9 1.06-6 9.97-16

8 3.81-9 5.01-9 1.29-8 3.14-10 4.76-7 1.72-17

12



2) 2
TABLE 3.1. The errors 1.(12, 2.(I(Continued)

= 3

p = 0.1 p = 15 p = 0.5

2( 2 2 2 2 2
p _0.(I1) 71(I2 • (1 71(I 2 n0 (1 ) 1 (1 2

1 1.00-5 1.59-1 7.59-5 8.65-2 3.12-2 9.19-4

2 9.76-9 6.71-4 7.42-8 2.63-4 3.05-3 4.23-7

3 1.69-10 1.59-5 1.28-9 4.51-6 5.29-7 1.09-9

4 9.53-12 7.64-7 7.24-11 1.56-7 2.98-8 5.72-12

5 1.02-13 5.41-8 7.77-12 8.01-9 3.20-9 4.24-14

6 1.65-13 4.88-9 1.26-12 5.23-10 5.16-10 4.35-16

7 3.59-14 5.23-10 2.69-13 4.05-11 1.10-10 5.08-18

8 9.33-15 6.33-11 7.07-14 3.54-12 2.91-11 6.72-20

is algebraic. The transition point between the exponential and algebraic rate

is when the errors in 11 and 12 are equal. We will see the same

features in 2 dimensions.

Theorem 2.3.1 and Table 2.3.1 show also that nonuniform degree

distribution is optimal. If the mesh is underrefined, then high p in I1

and low In 12 Is optimal and for overrefined mesh the opposite holds. The

adaptive code for nonuniform degrees constructs such distribution. Once more

we see that overrefinement is preferable. The value of p z 0.15 is, as we

will see in the next section, optimal for all a when nonuniform p is used

and practically is good also for p uniform. The same effects hold in 2

dimensions as will be seen in Section 3.

As was said above, the mesh design is very important. We refer to [2]

[3] [54] (55] [56] for practical rules for a design as a "good" mesh. Let u-

13



underline-as we have seen-that meshes for the p-version have different

character than that of the h-version with fixed degree p. Nevertheless,

sometimes an adaptive construction of the mesh for the h-version with, say p

= 3, could be possibly used for the p-version although it is far from the

optimal [59]. This could be seen from comparison of the formulae for the

optimal mesh for the h-version and p = 3 discussed in Section 2.2 and the

formulae of Section 2.3. The error estimator based on the extrapolation is

very accurate and robust. We will see it more in 2 dimensional example.

The first theoretical results for the p-version in 2 dimensions are in

[221, for the three dimensional problems in [28] [29]. For the survey of the

results, we refer to [20]. The p-version is related to the spectral element

method. See, e.g. (43].

2.4. The h-p version

In this section we will discuss theoretical questions about the h-

version. The theoretical results will also give an additional insight

into the desirable mesh design for the p-version.

The first question is about the lower bound of the error.

Theorem 2.4.1 [36]. For any mesh A with m(A) elements and any

P = (p 1.... Pm(A)) degree vector we have

(2.4.1). e,,le C c(a) 0

where

(2.4.2) p = a - 1/2, qo = (v2 - 1)2 = 0.17.

(Here once more the solution I is given In (2.2.1)). au

The next question is whether the error (2.4.1) can be achieved.

Theorem 2.4.2 [36]: Let the mesh A be geometric with the factor q,

14



a m(W-i
i.e. x0 = 0, x. = q , I = 1,2,.... im(A) and let pi [1+s(i-l)]

(where [-] means the integral part). Then we have

1. if s > s0 , then

(2.4.3) IleI1 C(C,q,s)q

2. if s < so, then

(2.4.4) ileZIE C(O,q,s)r/ 2 Ns

3. if s = so, then

-V/(;- 1 )N V2 In q In r

(2.4.5) 11el1 z C(o,q)e 2

and

(2.4.6) r = -v, S, (s- 1/2) In q

Furthermore, the optimal geometric mesh and linear degree vector combination

is given by

(2.4.7) qopt = (V 1)- 1)2

s = 2 - 1opt

In this case

(2.4.8) Ile,11E z C(0)[(v2- 1)2 2

In (2.4.3) and (2.4.7) means equivalency with the constants depending on

the (•,q,s), (a,q) and o, respectively.

Comparing (2.4.1) and (2.4.3) we see that up to the algebraic term

Vo in (2.4.1) the error for the geometric mesh is optimal (i.e., the

geometric mesh can be in this sense understood to be optimal).

Theorem 2.4.1 and (2.4.2) show that geometric mesh with q z 0.17 is

optimal independently of the strength of the singularity a provided that

degrees of the elements are not constants and their distribution depend on the
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strength of the singularity. For the uniform degree distribution and

geometric mesh, we have

Theorem 2.4.3 [36] Let A be a geometric mesh with the factor q and

m elements and uniform degrees p = sm(A). Then we have

1) If s > S1

(2.4.9) I1ez,1E CC ,q) q

2) If s < so

(2.4.10) IleE ~E C(.,q) r

3) If s = so, then

e(x-- ) NMn r en q
(2.4.11) ile,1IE C(,q) e 2

is optimal for given q with

(C-1)en q
S - r - v/

0 n r l+ r

a = min(2c-1,c•).

The optimal combination is given by

(2.4.12) q = qopt = (v,2- 1)2

(2.4.13) s = so = 2a - I

Theorem 2.4.3 shows that the factor q of the geometric mesh is optimal for

uniform mesh but the exponential rate of the convergence is not optimal. The

exponent is by the factor v2 smaller. We see also that the increase of the

degrees in analogous as in the case of nonuniform degrees.

Theorem 2.4.3 does not apply that for the uniform degree the geometric
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mesh is optimal. In fact, we have ween in Section 2.2 that for every degree

p the radical mesh is optimal. Hence, we can ask the question, what rate of

convergence will be obtained when the optimal racial meshes with optimal

number of elements are used and p -) w?

Theorem 2.4.4 [36]. There exists sequence of meshes A (dependent on

p) such that for uniform degrees of elements we have

(2.4.14) 1.lelE 1 e-4l(-/ 2)N /e

This error is obtainable by using the proper sequence of radical meshes with

p z4 -(a-112)Nle as N -, _ p+1/2 Let us summarize the theorem in
a-1/2

Table 2.4.1. For r = (l-vl)/(l+vrq) we have

(2.4.15) ii ez,1E 1 eKV(a-1/ 2 )N

TABLE 4.1. The error for the h-p version.

METHOD q s K T

Geometric q (a-1 / 2 )fn q V2 en q En r 0
mesh en r
nonuniform 1/2 0.3932(a-1/2) 1.5632 0
p-distribution
Theorem 2.4.2 (Vr-I) 2 2a - 1 1.7627 0

tn q Vnq• i~,•l
Geometric q (a-1/2)7!S ven rqen r min(a,2a-1)
mesh r

uniform 1/2 0.3932(a-I/2) 1.1054 min(a,2a-l)
p-distribution
Theorem 2.4.3 (v-21)2 20 - 1 1.2464 min(a,2a-l)

Radical mesh
q and s 1.4715 - 1/2
asymptotic
Theorem 2.4.4

17



Let us now briefly analyze Table 4.1. The h-p version leads to the

-KV(-ii1/2)N
exponential rate of convergence e . For the uniform p and

optimal geometrical mesh K = 1.24 while for the optimal nonuniform mesh we

get K = 1.76 = 1.24 V . Analogous results hold in 2 dimensions when the

uniform degrees leads to the exponents which is by factor b smaller than

the exponent for the nonuniform degree distribution on a geometric mesh. For

uniform degrees, a sequence of the meshes with the exponent 1.47 can be

constructed. The shown results indicate roughly what kind of meshes should be

considered for the mesh design for the p-version

The mentioned results have to be interpreted in the light of adaptive

approaches when applied for practical computations.

Once more two strategies of the mesh generation could be used. The

local and global one as discussed in Section 2.2. In the local approach the

main difficulty is to decide whether change of the degree or refinement (or

derefinement) of an element has to be made. See, e.g. [361 [48] [50] for a

discussion. In the global strategy, the main difficulty is to extract from the

solution the information allowing to design global mesh and global degree

distribution. The adaptive approach based on p uniform which is made as a

sequence of meshes for increasing uniform degrees (analogously as in Theorem

2.4.4) seems too impractical.

The h-p version was theoretically analyzed in the two dimensional cases

in [4H[6][8][9][16](11][15][211136][37][38][48][55][59]. See also the survey

[201.

3. THE FINITE ELEMENT METHOD IN TWO DIMENSIONS

3.1. Introduction

In this section we will discuss the performance of the p and h-p version

for the elliptic boundary value problems with piecewise analytic data. We
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will consider polygonal domains with straight or curved sides, the piecewise

analytic coefficients of the operator, piecewise analytic right hand side and

boundary conditions which type could change. This class of problems is

typical in engineering

It is well known that the solution has singular behavior in the corners

of the domain, places where the boundary condition abruptly changes, etc.

See [27][37][42]. Although the solution behaves in this areas similarly as

the function (2.1.2) in Section 2.1, the situation here is much complex.

Mathematical tools of accurate description of the regularity of the solution

are needed. Such tool is the weighted Sobolev space H 'k (0) and the
f3are

countably normed space B t (). The use of these spaces allows to prove very•3

accurate estimates of the error of the p and h-p version of the finite

element method which are very analogous to the one cited in Section 2,

although not so detailed. To asses the detailed applicability of the

theoretical results for practical computation, we will present various

numerical examples and tests.

The h-p and p versions in practical environment have to be understood in

a context of adaptive procedure with an error estimator. We will address

these aspects too.

We will not elaborate here on the h-version because this is a classical

approach and many results are available.

3.2. The spaces H. e(M) and B1(0) and the model problem

Let 0 c R2 be a polygon with vertices A and (open) edges r =

M
AtAA t+1' 1 S M, (AM+, = A,) and 80= U rI By w. we denote the

interior angle of Ae and assume 0 < wt 2n. Let r, Wx) = dist(x,A,) and

13 = (1 ..... M be M-tuple of real numbers 13 e (0,1). Further, for any
M k+1 I

Integer k we define x+k() = 1T r7 W.

19



Let H k(0) be the standard Sobolev space. Then for k t 2t 0,

integers we define the space H k• (0) as the completion of the set of all

infinitely differentiable functions under the norm

2 2 2 e
ull k M = IullH 1 + II 0C l_ D f 1(), t -

H9 (•2) Ht- I

and

2 2
H O 1 t 13 + IL 2  ( Q) "

(3 0:5 1alIs

We further introduce the countably normed space BR (0)13

B t(2) = {uju E Hk't(6), V k 2 -, 11pf+IO1_- DMU11L2(0) s cdk-t(k-),
13 (3 (3ll- 2(2 Cd k-,

ot = k,k+l,..., constants C 2 1 and d a 1 independent of k}

Remark 3.2.1. The intuition behind the definition of the spaces

H•'t(Q) and Bt(92) is to consider function u = r7 in the neighborhood of
9 13

the corners and achieve that it naturally belongs to these spaces. The

solution u behaves in the neighborhood of the corners similarly as this

function. See [7][11][12][37].

Let us consider the following model problem.

-Au = f on 0
(3.2.1)

ulrD = gD = GDIrD

ulr = 9N = GNIrN

where r = U iri , r = U ri; 2)* 0 isa subset of At = 1,2 .... M}

D(9) = {uju e H1 (Q),u = 0 on r } The weak form of
1 1

(3.2.1) Is u e H , u = GD on rD and such that for any v E HD (0)
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(3.2.2) B(u,v) = fv dx + f G N v ds = F(v)
"rN

with

(3.2.3) B(u,v) = fn VuVv dx

Similarly, as in one dimension, we define the energy norm

(3.24) IIUIIE = (B(u,u))1,2

which is equivalent to I on H (Q).

1 11H 1(02)

Consider now the domain 0 shown in Fig. 3.2.1. Then we have
kO .22k+l

Theorem 3.2.1 (7]. If f e H 'O (Q), G e Hk+2'2((2), G e H (0)
13 1

with k e (0,1), 1 -s i :s M, then problem (3.2.1) has unique solution u EHk+2,2(n]) -i . <1
+2 with , =i if (3i > 1 K i or r3 E (1-•K i) if -

K_, where K = if r, r c r (or r ) and K, R otherwise.
i iii+i D N i 2w.

rI6wee I a i+ 2I A

A5 A3

r5 A4r2

A6 "6 A7 S2 2 A2

A8 r.
A• AM

Fig. 3.2.1. Polygonal domain Q.

Further, if f e B0(Q), G 4 B 2 (0) and G e B 1cM), then u e B2 (Q).
DN 13

Remark 3.2.2. The weight 13i depends on (3i and Ki which/is related

to the geometry of Q2. Hence, also if f, GD and GN are analytic, the
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solution still may have singular behavior because of the unsmootheness of the

boundary r of o. 0

Remark 3.2.3. If 0 is a polygon with the analytic curvilinear edges,

the solution u of (3.2.1) will be in B2 (92), c > 0 (instead of B2 (0))
f3+C 1

with c > 0 arbitrary (see [7])

Remark 3.2.4. Theorem 3.2.1 although formulated only for the problem

(3.2.1) holds also for other problems as for the elasticity problems where the

values of 0 . and (i are properly adjusted (i.e., they are not the same as

in Theorem 3.2.1). Analogous results are also valid for the eigenvalue

problems, etc. For more, see (121.

In the next section we will address the problem (3.2.1) and analogous

problems for the elasticity and will always assume that GD = 0.

3.3. The h-p version

The h-p version simultaneously refines the mesh and increases the

degrees of the elements. In this section we assume that the solution u of

the problem has singularity only at one vertex of the domain. Let us define

In the neighborhood w of the vertex the geometrical mesh Om = {iJO 1 • i

S m, 1 s j : J(i)} where Q2.. are the elements, the triangles or

quadrilaterals (straight or curved). Example of a sequence of geometrical

meshes is shown in Fig. 3.3.2. The elements 2ij satisfy the usual

conditions preventing their degeneration and other standard conditions.

We denoted by a- the mesh factor (denoted in Section 2 by q) and by

m the number of layers. Elements .ij' j = 1,2,... ,J(i) are located in the

(i-1)-th layer. Denote by d the distance between the element (2.. andij 1J

the vertex and by h.. and h the maximal and minimal side of the element

m-i
QiJ" We will assume that dij 2 hij z i , 1 < i S m, 1 5 j 5 Ji)
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dlj = 0, hlj z hlj rn-1 1 s j s J(1). Further, we will call the vector

P = {Pij I S i : m, 1 5 j 5 i~i)), pij > 1 integer the degree vector. We

defined only the elements . in the m layers near the vertex covering W.

m c mOn fl-w we complement the mesh {M } by the elements J9} .= Qa' Let iM. .}

be the mappings of the standard elements S onto Q. . resp. onto Q . We13 r

will assume that these mappings satisfy the usual conditions of the finite

element method. The finite element space S P'l ) is then defined by

sP( =X,Y {UI = qi .x,y) = 0(M. (xy)),
ij 13 13

0(g,n) is a polynomial of degree pij on S)

and analogously on {•r} with the degree p = max pi; SP'Il ) = (SP(m) ®
r r ij' s

P m 11sP(C k )) r) H (M) and ýpl(2) = SP"(M) r) 1(M). As usual, the finite
s

element solution u e 9p"l(9) satisfy5

B(u ,v) = B (u,v) 1 Fkv), Vv e §pl(9)5

and we get Theorem 3.3.1 [8]. Let Qm be the geometrical mesh with the mesh
a,

factor a- e (0,1) and let W > 0 be a degree factor such that pij = Pi

÷ [p(i-1)] (linear distribution ) or pij= p = I + [pm] (uniform degree

distribution), and p = max pij on cQm If u c B ((M) n % (0), is the

solution of the problem, then

(3.3.1) Iu-u sllE : CebN 1

where N is the number of degrees of freedom (i.e. dimension of S P'(0))

and constant C and b are independent of N. We see an analogous result as

in Theorem 2.4.2 but without exact specification of the constants C and b.

Let us illustrate Theorem 3.3.1 by a numerical example. Consider the

elasticity problem on a cracked domain shown in Fig. 3.3.1. We will assume
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that the material is homogeneous and Poisson ratio v = 0.3. The exact

solution is the first stress intensity mode and tractions are prescribed on

r e !Q. Because of the symmetry, we consider only the upper half of the

domain. The sequence of the used meshes A with (r = 0.15 and n = m + 1n

is shown in Fig. 3.3.2. The uniform degree distribution was used with p =

1 + (jim], p = 1. The computation has been made by the program MSC/PROBE. In

Table 3.3.1 we show the basic results and the relative error IleIER = I •

100% with b and C in (3.3.1). By IluOlE we denoted the energy norm of

the exact solution. In Fig. 3.3.3 we show the error as function of N. We

present here also the error for the p-version. The error of the h-p version

((3 = 1) is shown by the solid line. We see that the line is straight as

expected from the theory. The values of constants b and C cannot be at

YY

o -1 0 1 -1 0 1

MESH A1  MESH A2

- "
•-1 0 1 x \\' X,-X

1XAY Y

-1 a 2a 1 -1 0o; 1
MESH A MESH A6

AY AY
1 1

-. 10N X3 PWX
-1 13-12&

MESH A 5  MESH A 6

Fig. 3.3.1. Cracked panel. Figure 3.3.2. Geometric mesh A . 1-5n-5b.

n
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present theoretically determined. In Fig. 3.3.4 we show the error of the h-p
I

version for a- = 1 and various a-. We see that the value a = 0.15 is nearly

optimal.

TABLE 3.3.1

Performance of the h-p version on mesh An, 1 s n - 6, a- = 0.15, A = 1.

Mesh p N 1N/3 I"eIIE,R b CIluoIIE

A1  1 9 2.08 60.92 0.741 1.455

A2 2 48 3.63 20.23 0.740 2.303

A3  3 121 4.95 7.61 0.776 2.098

A4  4 256 6.35 2.57 0.720 1.810

A5  5 477 7.82 0.90 0.670 1.683

A6 6 808 9.31 0.33 0.670 1.688

N

25 50 100 200 400 600 800 1000 1200 1500

30... VERSION - ] -

20 I 1
10--- ,P-VERSI -3

-* °.3 I
I 2\ --,~..�.. P-VERIVRON -400J

h -P VERSION -o.. P-VERIO "505 -

"P-VERSION
0.5 -- ,.-- ~ - - - 6

I I

-- 7

2 3 4 5 6 7 8 9 10 11

Fig. 3.3.3. Performance of the p and h-p version
on Mesh A ,1 S n S 6, a = 0.15.

n
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N
25 50 100 200 400 600 800 000

30 +- " -2

I 6-1-05
_ -- _--_ X ----

2__ js _ _ ___ __ z

05 -- J -x -6

2 3 4 5 6 7 8 9 10

Fig. 3.3.4. Performance of geometric Mesh
with a = 0.15, 0.08 and 0.5.

We note that the results are analogous to those in Section 2. If the
3-

degrees of the element are linearly distributed we would get b' z V3 b in

(3.3.1) and Table 3.3.1.

The adaptive procedure consists of the design of the estimator E and

the adaptive principles. The error estimator can be based on the

extrapolation technique. In Table 3.3.2 we show the exact error IlellE ' the

computed error estimator e = IlellE and the relative error of the estimator in

%. We see very high reliability of the estimator. The adaptive approach for

the h-p version is a complex one. Here once more the local and global

adaptive approach, as explained in Section 2, can be used. In contrast to the

one dimensional case transitional elements between the element of different

degrees are needed. In addition, various shape functions can be adaptively

chosen so that elements are not of a full degree. Further, different type of

elements, triangular or quadrilateral can be used and the degree of element

can also be understood as a total or tensor product type.
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TABLE 3.3.2

Error estimator of the h-p version on Mesh A n, 1 : n : 6, a- = 0.15, p = 1.

IelIE ll e 11 E lleIE,R% 11 e 11E, rX(Ile IIE- 1e UE)/ 11e II En

2.9596E-1 2.9662E-1 60.83 60.92 0.2189

9.8774E-2 9.8511E-2 20.28 20.23 -0.2669

3,7033E-2 3.7055E-2 7.606 7.611 0.0606

1.2489E-2 1.2500E-2 2.565 2.567 0.0926

4.3359E-3 4.3691E-3 0.891 0.897 0.6689

The implementation influences very heavily the adaptive process. For some

results, we refer here to [2][3]. It seems once more that the h-p adaptive

approach based on the adaptively constructed meshes for the h-version and

various p (analog to the case addressed in Theorem 2.4.4) is practically not

usable. Once more we see that the theoretical results could give a very good

insight in the problem of the design of an adaptive procedure. The first

theoretical analysis of the h-p version in conjunction with the regularity of

the solution described by countably normed spaces appeared in [38]. For

more results, we refer to [8][9]H10][11][12] and the survey [20] where

additional references are available.

3.4. The p version

In the p-version the mesh is fixed and the degrees of the elements are

increased uniformly or nonuniformely. If the domain 0 has corners and the

solution is singular !n the areas of these corners, the rate of convergence of

the method is algebraic (see [13] [20] [21] [221). This is quite analogous

behavior results as in one dimension. If u e B2 (0) then Ile : CN-2(1-f)13 IelE C N

The rate Is twice as large as in the case of the h-version with a quasiuniform

mesh. In the case that the solution is analytic on ?2, we have Ile11E
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1/2-bNI/ -bpe z Ce As in one dimension, the accuracy is for large p governed

by the error on the element containing the vertex of the domain, but for

smaller p and the refined mesh, the error could be governed by the elements

far from the singularity.

As was said in Section 2, the user designs the mesh which is refined in

the neighborhood of the corners and other critical places and the degree of

the elements is determined adaptively. The mesh which typically has not too

many elements is designed by the experience and simple rules. Another way is

to use a crude mesh constructed directly by the user or adaptively by the

h-method with small p, say 3. Then this mesh could be further refined by

the users experience (see e.g. [591) or by an expert system (see, e.g. (15]).

We underline that the degrees of the elements are adaptively determined so

that reliable results are obtained for any choice of the meshes; of course, a

"bad" mesh will lead to a higher computer cost.

We will assume that the constructed meshes are of geometric type in the

neighborhood of the vertices with m0  layers, i.e., we will consider the

mesh Q with m0  fixed. From the analysis of (8] we havea, [ 02 (m 0+2) ( - R)-2(1- j3) p ](3.4.1) 11e1lE : C p + QPp]

where 0 < Q < 1 and 7 < 0.

The first term characterizes the error in the elements closest to the

singularities and the second term all others. For large p (as in one

dimension), the first term dominates. For small p the second one dominates

and the rate is exponential. Hence, the p-version has two phases, asymptotic

and pre-asymptotic. The preasymptotic phase is until the elements closest to

the singularity is not governing the accuracy. Hence, the user tends to

design such a mesh for which the desired accuracy in both terms in (3.4.1) is

balanced.

Let us present the computational results for the same elasticity problem
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as in Section 3.3.3. In Fig. 3.3.3 we already have shown the results of the

p-version. In Fig. 3.4.1 we show the relative error in the fn x fn scale.

N

25 50 100 200 400 800 1600

50 =..

30 I -2

20 ,

10 -2

5-

I 3 4 5 6 7
LN N

Fig. 3.4.1. The error of the p-version.

We see that for a fixed mesh the accuracy curve has a S shape with the

pre-asymptotic and asymptotic phase and inflection pint roughly when the error

of the elements closest to the vertex become to be dominant.

Let us now consider the problem for the Laplace equation on the domain

2/2
shown in Fig. 3.3.1 and the exact solution u = r cos 8/2, where (r,6)

are the polar coordinates. Because of the symmetry only one half of the

domain will be considred. The boundary condition is of Neumann type. On the

side (-1 < x < 0, y = O} zero Dirichlet condition is prescribed. The used

mesh is shown in Fig. 3.3.2 except the two square elements containing

singularity are replaced by four equal triangular elements. We use a- = 0.13

and a0 = 0.50.

In Figs. 3.4.2 and 3.4.3 we show the relative error IoeIIER % as

function of N in the pn x on scale for different p and various number of
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layers. The layers are depicted by marks. In Table 3.4.1 arnd 3.4.2 we show

the data ploted in Fig. 3.4.2 and.3.4.3. In these tables we indicte by solid

lines the numbers of layers when the mesh is overrefined, i.e., when the

102 11 I l

.. ~' ..........................
.... ... .p 

4 . . . .

.... ~ ~ ~ ~ ~ ~ ....... ............. ... .....

.................. .................

10.
108 0 0 0 0

Fig.3.4.2.. The error .of 6 th p .versio

10 .........
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error is not decreasing for the increased number of layers. This, as in one

dimension, depends on the degree p of the elements. We see that the number

of 3-4 layers and a = 0.13 is optimal and gives very good performance. For

p increasing the case or = 0.5 is also leading to the convergent results but

less efficiently. So we see that overrefinement is desirable.

In Tables 3.4.3, 3.4.4 and 3.4.5 we compare the performance of the

meshes for different ranges of accuracy.

Tables 3.4.3 - 3.4.5 show well the influence of the number of layers on

the accuracy. We emphasize that the element degree selection leading to the

desired accuracy is made adaptively. In practice m z 3 is usually used and

here , z 0.15 is a good choice for the accuracies of 1-3%. To show it, we

present in Table 3.4.6 the achieved accuracy for m = 3 as function of p

and N for o = 0.13 and a = 0.50.

The computations results we have presented are in very good agreement

with the theoretical analysis.
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TABLE 3.4.1. Performance of the p version on geometric mesh with o = 0.13

Mesh Number of p 1 p =2 p= 3 p 4

An layer, m N IleIIE,R% N Ile IE,R% N Ilej1 E,R% N IIe IE,R%

A 1 8 29.13 24 13.03 44 8.33 72 6.212

A 2 12 23.53 36 8.20 64 4.00 104 2.49

A 3 16 22.48 48 7.28 84 2.98 136 1.404

A 4 20 22.29 60 7.15 104 2.82 168 1.195

A 5 24 22.72 72 7.13 124 2.80 200 1.156

A 6 28 22.26 84 7.13 144 2.80 232 1.157

A 7 32 22.26 96 7.13 164 2.80 264 1.158

A 8 36 22.26 108 7.13 184 2.80 296 1.159

Mesh Number of p = 5 p = 6 p = 7  p= 8

An layer, m N IlellE,R% N IleIIE,R% N IleIIE,R% N IeIIER%

A 1 108 5.03 152 4.24 204 3.67 264 3.242

A 2 156 1.87 220 1.54 296 1.33 384 1.173

A 3 204 0.81 288 0.59 388 0.48 504 0.424

A 4 252 0.54 356 0.29 480 0.19 624 0.155

A 5 300 0.547 424 0.22 572 0.11 744 0.0686

A 6 348 0.49 492 0.21 664 0.094 864 0.0467

A 7 396 0.49 560 0.21 756 0.093 984 0.0418

A 8 444 0.49 268 0.21 847 0.092 1104 0.040
9
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TABLE 3.4.2. Performance of the p version on geometric mesh with o = 0.50

Mesh Number of P = p 2  p 3 p 4

An layer, m N Ile IE,R %R% N Iell E,R % N Ile IE,R%

A 1 8 36.01 24 21.40 44 15.34 72 11.962

A 2 12 27.45 36 15.30 64 10.89 104 8.48

A 3 16 21.60 48 10.95 84 7.72 136 6.004

A 4 20 17.85 60 7.88 104 5.47 168 4.245

A 5 24 15.58 72 7.76 124 3.88 200 3.006

A 6 28 14.30 84 4.31 144 2.75 232 2.127

A 7 32 13.60 96 3.36 164 1.96 264 1.508

A 8 36 13.23 108 2.76 184 1.41 296 1.069

A 9 40 12.95 120 2.41 204 1.03 328 0.7516 _ _

A 10 44 Iz.95 132 2.21 224 0.77 360 0.5311

A 12 11 i 12.90 144 2.11 244 0.60 392 0.3812

A 1? 56 12.86 168 2.02 284 0.44 456 0.20
13
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TABLE 3.4.2. Performance of the p version on geometric mesh with a = 0.50.
(Continued)

Mesh Number of P_= 5 p 6 p 7 p =8

An layer, m N Ile IIE,R% N Ile llE,R % N Ile IIE,R% N Ile IIE,R%

A 1 108 9.80 152 8.30 204 7.20 264 6.352

A 2 156 6.94 220 5.87 296 5.09 384 4.493

A 3 204 4.91 288 4.16 388 3.60 504 3.18
4

A 4 252 3.47 356 2.29 480 2.55 624 2.25

A6 5 300 2.45 424 2.08 572 1.80 744 1.59

A 6 348 1.74 492 1.47 664 1.27 864 1.1267

A 7 396 1,23 560 1.04 756 0.90 984 0.798

A 8 444 0.87 628 0.73 848 0.64 1104 0.56
9

A16 9 492 0.61 696 0.52 940 0.45 1224 0.40

A 1 16 540 0.43 764 0.37 1032 0.32 1344 0.28

A 11 588 0.31 832 0.26 1124 0.23 1464 0.20
12

A13 12 588 0.15 968 0.13 1308 0.11 1704 0.10

TABLE 3.4.3. Comparison of performance of the p-version on

for the accuracy 1%.

a, = 0.13 (r = 0.50

p

m N IIelER m N IlelIE,R*

3 9 204 1.03

4 4 168 1.19 8 296 1.06

5 3 204 0.81 8 444 0.87

6 2 220 1.54 7 560 1.04

7 2 296 1.33 7 756 0.90

8 2 384 1.17 6 864 1.12
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TABLE 3.4.4. Comparison of the p-version performance on 0m for the accuracy 3%

a = 0.13 a = 0.5

p
m N lIE, R% m N IleIIE,R

2 8 108 2.76

3 3 84 2.98 6 144 2.75

4 2 104 2825 5 200 3.00

5 2 156 1.87 5 300 2.45

6 2 220 1.54 356 2.94

7 2 296 1.33 4 480 2.55

8 1 264 3.24 3 504 3.18

TABLE 3.4.5. Comparison of the p-version performance on Om for the
accuracy 12%. a-

cr = 0.13 a = 0.15

p
m N Ile IE,R 4  m N IleIE,R/o

1 10 44 12.95

2 1 24 13.03 3 48 10.95

3 1 44 8.33 2 64 11.89

4 1 72 6.21 1 72 11.96

5 1 108 5.03 1 108 9.80

6 1 152 4.24 1 152 8.30

7 1 204 3.67 1 204 7.20

8 1 264 3.24 1 264 6.35
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TABLE 3.4.6. Comparison of performance of the
3

p version on 0o"

0" = 0.13 o" = 0.50
p N

Ile 11 E ,R %' Ile IIE , R %

1 30 22.47 21.10

2 60 7.28 10.95

3 104 2.97 7.72

4 168 1.37 6.00

5 252 0.76 4.91

6 356 0.51 4.16

7 480 0.38 3.60

8 674 0.30 3.18

mTABLE 3.4.7. Performance of Error Estimator on Mesh m
*= 0.13, m = 2. 0"

p N E R % IleIIER e

1 12 23.52 23.56 1.00

2 36 8.19 8.26 0.999

3 64 3.97 4.00 0.992

4 104 2.45 2.49 0.984

5 156 1.82 1.87 0.973

6 220 1.47 1.34 0.954

7 296 1.25 1.32 0.947

8 384 1.08 1.17 0.923
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As we said, the essential part of the code is an error estimator. For

the p-version the estimator based on the extrapolation is very effective. The

quality of the estimator can be judged by its effectivity index 0

estimate -

true error 17e

which can be computed by in benchmark computations. We show in Table 3.4.7

the quality of the estmator for on example when the mesh A (i.e., Qm
3 a

m = 2) is used for a' = 0.13.

3.5. The adaptive p and h-p versions

The aim of the adaptive approach is to obtain (in a most effective way)

the solution in the a-priori given range of accuracy with a reliable error

estimate. The effectiveness is meant in general way, i.e., includes the

computer and manpower cost. The adaptive approach is very much influenced by

the implementation aspects. The code based on the h, p and h-p version have

very different characters. Here we will concentrate on the p version and the

error measure of the energy norm.

1) The mesh generation is for complex geometry very laborious. Various

mesh generators commercial and not commercial are available today. They focus

primarily on the handling of the geometry. In the case of the h-version (in

two dimensions) various adaptive codes are available. Nevertheless, these

meshes are not appropriate for the p-version (although, of course, they can be

used too).

2) The mesh for the p-version is characterized by large elements with a

(geometric) refinement in the neighborhood of singularities.

3) The mesh in the neighborhood of the singularity has to be rather

overrefined than underrefined. The underrefinement can be more "risky". The

reasonable overrefinement is not costly. The underrefinement can lead to

pollution effects. For the stronger singularity more layers have to be used.
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Usually we will recommend 2-4 layers., The factor (r of the geometrical mesh

in the neighborhood of the corners can be different, nevertheless, we

recommend, for the reasons explained in previous sections, to use a - 0.15.

4) The mesh generator has to have special features to lead to the

meshes which are advantageous for the p-version. They can be based on various

principles. For example, on the design of the crude mesh and special "layer"

refinement in the neighborhood of the critical places possibly by help of an

expert system (see, e.g. [15]), etc.

5) If the information about the solution in some point the neighborhood

of the corner is needed, then these points have to be separated from the

corner by 2 layers. The stresses in the area very close to the corners have

to be computed by stress intensity factors.

6. The p-version could suffer by an oscillation of the solution

if the mesh is improperly designed. This could happen in the elements which

contain the singularity. This element has to be small and direct stress

computation in this elements should not be used, We note that the energy

error converges also in this element. Nevertheless, experience backed by the

theory shows that for proper mesh no oscillation occurs.

7) The error indicators and estimators based on the comparison of data

for various consecutive p performs very well, not only for the energy norm

accuracy measure. This is essential because the energy norm measure is

usually not the most important one and possibly could be misleading when other

accuracy measure is of interest.

8) The error indicator can be used elementwise. This is essential if

the accuracy will not be achieved in the range of admissible range of degrees

p. Then a new mesh is created by refinement of the elements with largest

error indicators.

9) So far we mentioned only the p adaptivity with uniform p. The
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adaptive approach can be based on adaptive additions of various shape

functions so that the notion of degrees is loosing its meaning.

10) The experience holds also for the p-version that quadrilateral

elements are better than the triangular ones.

ii) One of the main advantage of the p-version is relatively easy

implementation and possibility of the reliable error control for any data of

interest by comparing the computed data for various p.

12) The implementation and adaptive strategy for the h-p version is much

more complicated but could be made, see, e.g. PHLEX program [49] [50]. The

possible plausible approach to construct the h-p version by optimal meshes for

the h-version for increasing p cannot be recommended for practical reasons.

13) For additional aspects of the p-version for the analysis of

complicated engineering problems by the STRIPE program, we refer to [2].

4. CONCLUSIONS

We presented basic ideas behind the h, p and h-p versions and

characteristic theoretical results. The comparison of these approaches is a

complex task dependent on the criteria used. It reflects the implementation

aspects, computer hardware, etc. By our opinion one of the basic comparison

criterion has to be the possibility of accurate and reliable quantitative

assessment of the accuracy of any data of engineering interest. It seems that

the adaptive p-version (on a properly designed mesh) is one of the best

approach for the practical engineering computations of problems in structural

mechanics. (See also [2].) Of course, changing criteria of comparison or a

class of the problem could lead to different conclusions.

39



REFERENCES

[1] Ainsworth, M., Oden, J. T. [1991]: A Unified Approach to A Posteriori
Error Estimation Based on Element Residual Methods. Submitted.

[2] Andersson, B., Babu~ka, I., Petersdorff, v.T. [1992]: Reliable Stress
and Fracture Mechanics Analysis of Complex Aircraft Component Using a
h-p Version of FEM. To appear.

[31 Andersson, B., Babu~ka, I.. Petersdorff. v.T. [19921: Computation of
the Vertex Singularity Factors for Laplace Equation in 3 Dimensions.

[4] Babu~ka, I., Door, M. [19811: Error Estimate for the Combined h and p
Versions of the Finite Element Method, Numer. Math. 37, 257-277.

[5] Babufka, I., Duran, R., Rodriguez, R. (19921: Analysis of the
Efficiency of an a-posteriori Error Estimator for Linear Triangular
Finite Elements, SIAM J. Numer. Anal. To appear.

[61 Babu~ka, I.. Gui, W. [19861: Basic Principles of Feedback and Adaptive
Approaches in the Finite Element Method. Comput. Methods Appl. Mech.
Engrg. 55, 27-42.

[71 Babufka, I., Guo, B.Q. [1988]: Regularity of the Solutions of Elliptic
Problem with Piecewise Analytic data, Part I: Boundary Value Problems
for Linear Elliptic Equation of Second Order, SIAM J. Math. Anal., 19,
172-203.

[8] Babu~ka, I., Guo, B. Q. [1988]: The h-p Version of the Finite Element
Method for Domains with Curved Boundaries, SIAM J. Numer. Anal. 25,
837-861.

[9] Babu~ka, I., Guo, B. Q. [19891: The h-p Version of the Finite Element
Method for Problems with Nonhomogeneous Essential Boundary Conditions,
Comput. Methods Appl. Mech. Engrg. 74, 1-28.

[10] Babufka, I., Guo, B. Q. [1987]: The Theory and Practice of the h-p
Version of the Finite Element Method, Computer Method in Partial
Differential Equations - VI, Ed., R. Vichnevesky & R. S. Stepleman,
241-247.

[11] Babufka, I., Guo, B. Q. [1989]: Regularity of the Solutions of Elliptic
Problem with Piecewise Analytic Data, Part II. The Trace Spaces and
Application to the Boundary Value Problems with Nonhomogeneous Boundary
Conditions, SIAM J. Math. Anal., 20, 763-781.

(121 Babufka, I., Guo, B. Q., Osborn, J. E. [1989]: Regularity and Numerical
Solution of Eigenvalue Problems with Piecewise Analytic Data. SIAM J.
Numer. Anal. 26, 1534-1560.

[13] Babufka, I., Guo, B. Q., Suri, M. [19891: Implementation of
Nonhomogeneous Dirichlet Boundary Conditions in the p-Version of the
Finite Element Method, Impact Comp. Sci. Engrg. 1, 36-63.

[141 Babufka, I., Plank, L., Rodriguez, R. [1992]: Quality Assessment of the

40



A-posteriori Error Estimation in Finite Elements. Finite Elements in
Analysis and Design. To appear.

[151 Babu§ka, I., Rank, E. [1987]: An Expert System for Optimal Mesh Design
in the h-p Version of the Finite Element Method, Internat. J. Numer.
Methods Engrg. 24, 2087-2106.

[16] Babufka, I. and Rheinboldt, W. C. [1978]: A Posteriori Error Estimates
for Adaptive Finite Element Computations, SIAM J. Numer. Anal., 15,
736-754.

[17] Babufka, I., Rheinboldt, W. C. [1979]: Analysis of Optimal Finite
Element Meshes in R1, Math. Comp. 33, 435-463.

[18] Babu~ka, I., Rheinboldt, W. C. [1978]: A posteriori Error Estimators in
the Finite Element Method, Internat. J. Numer. Methods Engrg. 12,
1597,1615.

[19] Babufka, I., Rheinboldt, W. C. [1980]: Reliable Error Estimation and
Mesh Adaptation for the Finite Element Method, in Computational Methods
in Nonlinear Mechanics (J. T. Oden, ed.), North Holland 67-108.

[201 Babufka, I., Suri, M. [19901: The p- and h-p Version of the Finite
Element Method. An Overview. Comput. Methods Appl. Mech. Engrg. 80,
5-26.

[21] Babufka, I., Suri, M. [1987]. The h-p Version of the Finite Element
Method with Quasi-uniform Meshes, RAIRO, Math. Modelling and Numer.
Anal. 21, 199-238.

[22] Babufka, I., Szabo, B. A., Katz, I. N. [1981]: The p-Version of the
Finite Element Methods, SIAM J. Numer. Anal., 18, 515-545.

[23] Babufka, I., Vogelius, M. [19841: Feedback and Adaptive Finite Element
Solution of One-dimensional Boundary Value Problems, Numer. Math, 44,
75-102.

[241 Babufka, I., Yu, D. [1987]: Asymptotically Exact a Posteriori Error
Estimator for Biquadratic Elements, Finite Elements in Analysis and
Design 3, 199-238.

[251 Bank, R. E., Weiser, A. [1985], Some a-posteriori Error Estimators for
Elliptic Partial Differential Equations, Math. Comp. 44, 283-301,

[26] Bank, R. E. [1990]: PLTMG: A Software Package for Solving Elliptic
Partial Differential Equations. User's Guide 6.0 SIAM Philadelphia,
PA.

(271 DaUge, M. [19881: Elliptic Boundary Value Problems on Corner Domains,
Lecture Notes in Math. 1341, Springer, New York.

[28] Dorr, M. R. [1984]: The Approximation Theory for the p-Version of the
Finite Element Method, SIAM J. Numer. Anal., 21, 1180-1207.

[291 Dorr, M. R. (1986]: The Approximation of the Solutions of Elliptic
Boundary-value Problems Via the p-Version of the Finite Element Method,
SIAM J. Numer. Anal., 23, 58-77.

41



[30] Duran, R., Muschetti, M. A., Rodriguez, R. [1991]: On the Asymptotic
Exactness of Error Estimators for Linear Triangular Elements, Numer
Math. 50, 107-127.

[311 Duran, R., Muschetti, M. A., Rodriguez, R. [19921: Asymptotically Exact
Error Estimators for Rectangular Finite Elements, SIAM J. Numer. Anal.,
28,78-88.

[32] Durdn, R., Rodriguez, R. [1991]: On the Asymptotic Exactness of
Bank-Weiser Estimators, Numer. Math. To appear.

[331 Eriksson, K., Johnson, C. [1988]: Adaptive Finite Element Method for
Linear Elliptic Problems, Math. comp. 50, 361-368.

[34] Ewing, R. E. [19901: A posteriori Error Estimation, Comput. Methods
Appl. Mech. Engrg., 82, 59-72.

[35] Grisvard, P. [1985]: Elliptic Problems in Nonsmooth Domains, Pitman,
Boston.

[36] Gui, W., Babu~ka, I. [1986]: The h-p Versions of the Finite Element
Method in One Dimension, Part 1: The Error Analysis of the p-Version;
Part 2: The Error Analysis of the h and h-p Versions, Part 3: The
Adaptive h-p Version, Numer. Math.,43, 577-612, 613-657, 659-683.

[37] Guo, B. Q. [1988]: The h-p Version of the Finite Element Method for
Elliptic Equation of Order 2m, Numer. Math. 53, 199-224.

[38] Guo, B. Q.,Babugka, I. [1986[: The h-p Version of the Finite Element
Method, Part 1: The Basic Results, Part 2: General results
and Applications, Comput. Mech. 1, 21-41, 203-230.

[391 Hugger, J. [1992]: The Theory of Density Representation of Finite
Element Meshes. Examples of Density Operators with Quadrilateral
Elements in the Mapped Domain. To appear.

[40] Hugger, J. [1992]: Recovery and Few Parameter Representations of the
Optimal Mesh Density Function for Nearly Optimal Finite Element Meshes.
To appear.

[41] Kelly, D. W. [984]: The Self Equilibration of Residuals and
Complementary Error Estimates in the Finite Element Method, Internat. J.
Numer. Methods Engrg., 20, 1491-1506.

[421 Kondratev. V. A. [19671: Boundary Value Problems for Elliptic Equations
in Domains with Conical or Angular Points, Trans. Moscow Math. Soc. 16,
227-313.

[431 Maday, Y., Patera, A. T. [19891: Spectral Element Methods for the
Incompressible Navier-Stokes Equation in State of the Art Surveys on
Computational Mechanics, A. K. Noor, J. T. Oden (eds.) Amer. Soc. Mech.
Engr., New York, 71-143.

[44] Mestenyl, C., Szymczak, W. [1981]: FEARS user's Manual for UNIVAC 1100.
University of Maryland, Institute for Physical Science and Technology,

42



4

Technical Note BN-991.

(451 MSC/PROBE [1990], User's manual, MacNeal Schwendler Co. Los Angeles, CA.

(46] Noor, A. K., Babu~ka, I. {1987]: Quality Assessment and Control of
Finite Element Solutions, Finite Elements in Analysis and Design 3,
1-26,

[471 Oden, J. T. [1988]: Adaptive Finite Element Method for Problems in
Solid and Fluid Mechanics, in Finite Elements, Theory and Application,
D. L. Dwyer, M. Y. Hussani, R. B. Voigt (eds.), Springer, 268-291.

[48] Oden, J. T., Demkowicz, L., Rachowicz, W., Westermann, T. A. [1989],
Towards a Universal h-p Finite Element Strategy: Part 2, A posteriori
Error Estimation, Comput. Methods Appl. Mech. Engrg. 77, 113-180.

[491 Oden, J. T., Rachowicz. W, Demkowicz, L. [1989]: Toward a Universal h-p
Adaptive Element Strategy, III. Design of h-p meshes, Comput. Methods
Appl. Mech. Engrg. 77, 181-1212.

[50] PHLEX User's Manual [1990], Computational Mechanics Co., Austin, TX.

(51] Rivara, M. C. [1984]: EXPDES User's Manual, Catholic University,
Leuven, Belgium.

(52] Shephard, M. S., Finnigan, P. M. (1989]: Toward Aautomatic Model
Ggeneration IN State-of-the-Art on Computational Mechanics, (A.
K. Noor and J. T. Oden, eds.), Amer. Soc. Mech. Engr., New York.

[53] Shephard, M. S., Niu, Q., Bachmann, P. L. [1989]: Some Results Using
Stress Projectors for Error Indication and Estimation, in Adaptive
Methods for Partial Differential Equations, J. E. Flaherty, P. J.
Paslow, M. S. Shephard, J. D. Vasilakes, eds., SIAM Philadelphia,
83-99.

[541 Szabo, B. A. [1986]: Estimation and Control of Error Based on
P-convergence, in Accuracy Estimates and Adaptive Refinements in Finite
Element Computations, (I. Babufka, 0. C. 2ienkiewicz, J. Gago, E. R. de
Olivera eds.), J. Wiley & Sons, New York, 61-78.

[55] Szabo, B. A. (1990]: The p and h-p Versions of the Finite Element
Methods in Solid Mechanics, Comput. Methods Appl. Mech. Engrg. 80,
185-195.

[561 Szabo, B. A., Babufka, I. [1991]: Finite Element Analysis, J. Wiley &
Sons, New York.

[57] Zienkiewicz, 0. C., Zhu, J. Z. [1987]: A Simple Error Estimator and
Adaptive Procedure for Practical Engineering Analysis, Internat. J.
Numer. Methods Engrg. 24, 337-357.

(58] Zlenkiewicz, 0. C., Zhu, J. Z. [1990]: The three R's of engineering
analysis and error estimation and adaptivity, Comput. Methods. Appl.
Mech. Engrg. 82, 95-113.

[591 Zienkiewicz, 0. C. Zhu. J. Z., Gong, N. G. [19891: Effective and
Practical h-p Version Adaptive Analysis Procedures for Finite Element

43



d

Method, Internat. J. Numer. Methods Engrg. 28. 879-891.

[60] Zienkiewicz, 0. C. Zhu. J. Z. [1992]: Superconvergent Derivative
Recovery Techniques and a Posteriori Error Estimation in the Finite
Element Method, Part 1: A general superconvergent recovery technique,
Report of INME, University College of Swansea, CR/671/91, also Internat.
J. Numer. Methods Engrg. To appear.

1611 Zhu. J. Z., Zienkiewicz, 0. C. (1990]: Superconvergence Recovery
Technique and a posteriori Error Estimators, Internat J. Numer. Methods
Engrg. 30, 1321-1339.

44



The Laboratory for Numerical Analysis is an integral part of the Institute for Physical
Science and Technology of the University of Maryland, under the general administration of the
Director, Institute for Physical Science and Technology. It has the following goals:

"* To conduct research in the mathematical theory and computational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

"* To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

"* To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

" To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

"* To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor I. Babugka,Chairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.


